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Abstract

Space groups of the 100 possible rotation functions
which do not involve cubic crystallographic symmetry
have been derived. All 100 belong to one of 16 basic
space groups, but many possess additional trans-
lational symmetry. Asymmetric units for Eulerian
coordinates and for 4, §_ coordinates are tabulated.

Introduction

Since its conception in 1962, the rotation function
(Rossmann & Blow, 1962) has been used in many
laboratories to determine the orientation of a known
molecule in a different crystal or to define non-
crystallographic rotational symmetry within a crystal.
Tollin, Main & Rossmann (1966) developed a method
for calculating the symmetry of the rotation function.
We have now applied that method to all possible
combinations of non-cubic space groups. One hundred
such pairs exist, but several combinations yield the
same symmetry elements so that there are only 16
possible space groups for all the rotation functions
from non-cubic space groups. Lattman (1972)
suggested a modification of the coordinate system for
the rotation function. We also tabulate asymmetric
units for the rotation space groups in the Lattman
0, , 8_ coordinate system.

Derivation of the rotation space groups

As explained by Tollin et al. (1966), the symmetry of
the rotation function can be deduced by exhaustive
combination of all equivalent positions in the proper
rotation groups of the two Patterson functions which
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are being compared. The three Eulerian angles 6,, 6,
and 6, are used to form a three-dimensional coordinate
system. The unit cell is 27 along each axis since 8 and
27 + 6 are the same rotation. Each equivalent rotation
is considered an equivalent position in the rotation
space. Fortunately, the rotation space groups thus
formed are members of the crystallographic space
group set described in International Tables for X-ray
Crystallography (1969). Table 1 lists the symmetry
elements in Eulerian angles for the proper rotation
groups of the nine non-cubic Laue groups. Each group
includes the operation 7 + 8,, —,, # + 6,, which is an
identity operation in the Eulerian system.

Since the Eulerian rotation matrix is not Hermitian,
reversing the order of the Patterson functions in the
rotation function does not produce the same rotation-

Table 1. Symmetry elements S; and ,S for all proper
rotation groups except cubic ones

This table is compiled from Tables 1 and 2 of Tollin et al. (1966).

Proper
rotation Symmetry elements* Symmetry elements

Laue group group S, 5
1 1 n+0, -0, n+6, n+6, —by n+6,
2/m 2 n+8, by n+b, x4, b a+b
(b axis unique) n—6, n+6, 8, 8, n+6, n—6,
2/m* 2 n+6,, =6, n+0, n+6,. -6, n+b,
(c axis unique) n+6, 6y 6, 0, S n+0,
mmm 222 n+60. —b, n+6; a+6, -6, T+ 6,
n=6, n+6, [ 0, n+6,, n—b;
n+6, 8, 6, 6, O n+6,
4/m 4 n+6. —b6), n+b, n+6, -6, o+
-n/2+6,, 6, A 8, O, a/2+06,
4/mmm 422 n+6. -6, n+6, n+6, -6, n o+,
=8, n+6, 8, O n+b, -0,
—n/2+60, 0, 8, 0, O n/2+6,
3 3 n+6. =6 m+6, w+b, —6, nw+,
—2n/3 +40,. 0, 0, 0, 6, 27/3 +06,
3Im 321 n+6, —O, n+6, n+6, -0, n+8,
=6, 1+, 4, 8, n+6, n-0,
—2n/3 +6,, 6, o, 6. O, 21/3+6,
6/m 6 T+, —b, 7+6, 7+, by n+8,
~n/3+6. by 0, 8. b /3 +6,
6/mmm 622 T+l =, n+l,  n+6, =6, n+0,
-6, n+86, b 0. n+b, -0,
—n/3 +6, 6, 0, 8. 6, /3 +6,

* Proper rotation-group symmetry clements S, and ,S are applied successively
to generate a rotation-function symmetry element ,S,. S, is an element in the
Patterson map which is rotated.

+ The two monoclinic settings (b axis or ¢ axis unique) are not separate Laue groups
but are treated individually here since they produce different results in the rotation
function.
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function equivalent positions. Consequently, we treat
reverse order in the rotation function as an inde-
pendent case even though the two arrangements do
yield related equivalent positions (Tollin et al., 1966).

As an example, suppose the Patterson map to be
rotated (P,) has Laue symmetry P6/m and the other
Patterson map (P,) has symmetry P2/m with the
twofold rotation axis parallel to b. From Table 1, the
Laue group symmetry elements .S; and ,§ are:

S,(6,,60,,6;) » (n +6,,—6,, 1 +6,);
S, (6,,6,,6;) - (—7/3 +6,,6,,6,);
1S (6,,6,,6,) » (n +6,,—6,, n +6,);
8 (6,,60,,6;) = (6,, © +6,, n—86,).

An exhaustive combination of these S; and ;S results in
24 unique rotation-function symmetry elements ;S,.
Multiple application of the sixfold rotation element is
required to generate all possible equivalent positions.
Another example of this type of treatment has already
been given (Tollin ef al., 1966). For each of the 24 ,S,
below, one of the combinations of S;’s and ,S’s which
yield each ;S is shown in parentheses. Other combin-
ations exist which yield the same equivalent position
S

01, 029 03

6, —6, n+6, (5,.5,.5,.5)

6, n+6,, -0, ()

6, n—6, —6, (S,.5,.5,.5,.,5)
/3 +6,, 6, 6, (5,.5,.5,.5,.5)
n/3+6, —6, n+60;, (S,.5,.5,
/346, n+60, n—6; (S,.5,.5,.5,.5,.,5)
n/3+6,, n—6, —6;, (S,.5,.5,.,9)

21/3 46, 6, 6, (S,.5,.5,.5,)
s

27/3+60,, —6,, n+0, (S,.S,
27/3 +0,, n+6,, n—0, (S,.5,.5,.5,.,5)
21/3 +6,, 1—0, —8, (5,.5,.,5)

n+6, 6, 6, (S,.5,.5,)

n+6, 0, n+6; (S)

n+6, n+6, 70, (S,.5,.5,.,5)

n+6, n—6,, -6, (S,.,5)
4n/3 +6,, 6, 6, (S;.Sy
4n/3 +6, » 140, (S,.5,.5,.5,.5,.5,)
4n/3 +6,, n+6, n—6, (S,.S,.,5)
4n/3 +6,, 1—6, —0, (S,.5,.5,.5,.5,.5,.,5)
571/3 +6, 6, 6, (S)
5n/3+6,, —6, n+6;, (S,.5,.5,.5,.5)
51/3 +6,, n+6, n—0; (S,.,5)
51/3 +6, m—0, —6, (5,.5,.5,.5,.5,.,5).

This rotation-function space group of 24 equivalent
positions is made up of a basic group of four rotations
plus five related groups which are identical except for
consecutive translation by n/3 along the 6, axis. In the
basic set the space group P2cbh can be recognized by
examining the symmetry properties shown in brackets
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below:

6, 6, 6

6,, —06,, n +6, (cglide perpendicular to b)
8,, m +6,, n —6, (b glide perpendicular to ¢)
6,, n—6,, —6, (2-fold axis along a).

For every rotation space group, there are several
consistent choices of the range of the asymmetric unit.
But when the rotation function is calculated as a
function of #, and 6_ in sections of constant 6,
(Lattman, 1972), it is advantageous to minimize the
range of 6,. For this reason, we chose the asymmetric
unit for this example to be:

0<86,<n/3
0<6,<n/2
0<6,<2n

We wrote a Fortran computer program which listed
all possible combinations of a group of input sym-
metry elements. From these lists the equivalent
positions for each rotation-function space group were
deduced.

Our numbering of the possible rotation-function
space groups is listed in Table 2. Once the number of a
specific rotation-function space group is known from
Table 2, its characteristics can be easily found in Table
3, in which all the possible rotation-function space
groups, except those involving cubic Laue groups, are
listed. In the 100 unique combinations of Laue groups,
there are only 16 basic rotation-function space groups,
whose equivalent positions are listed in Table 4. All
rotation-function space groups are either one of the 16
listed in Table 4 or one of the 16 basic groups plus
translation along the 6, and/or the @, axis. This
translation is not a linear translation in real space, but
rather it is a rotation about an axis. Translation along
6, does not occur.

In Table 3, the number of equivalent positions is
greater in most cases than the number of equivalent

Table 2. Numbering of the rotation-function space
groups

The Laue group of the rotated Patterson map P, is chosen from the
left column and the Laue group of P, is chosen from the upper row.

2/m  2/m
b axis c axis

1 unique unique mmm 4/m 4/mmm 3 Im  6/m 6/mmm

1 1 11 21 31 41 51 61 71 81 91

2/m 2 12 22 32 42 52 62 72 82 92
b axis
unique

2/m 3 13 23 33 43 53 63 73 83 93

c axis
unique
mmm

4
4/m 5 15 25 35 45 55 65 75 85 95
4/mmm 6 16 26 36 46 56 66 76 86 96
3 7 17 27 37 47 57 67 77 87 97
im 8 18 28 38 48 58 68 78 88 98
6/m 9 19 29 39 49 59 69 79 89 99
0

6/mmm 1
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No. of
the
rotation
space
group

1

20

21

22

23

24

25

26

ROTATION-FUNCTION SPACE GROUPS

Table 3. Rotation-function space groups

No. of
equivalent
positions?

2

24

24

24

48

32

Symbol®

Pn

Pbn2,

Pc

Pbc2,

Pc

Pbc2,

Pn

Pbn2,

Pc

Pbe2,

P2nb

Pbnb

P2ch

Pbcb

P2ch

Pbch

P2.nb

Pbnb

Pbcb

Pa

Pba2

Pm

Pbm2

Pbm2

Translation
along the
6, axis®

2n

2n

7/2

/2

2n/3

27/3

a/3

n/3

2n

2n

/2

a/2

2n/3

27/3

/3

n/3

2n

2n

n/2

n/2

Translation
along the
8, axis®

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

Range of
the
asymmetric
unit?
0<6,<2n
0<b,<n
0<6,<2n
0<6,<2n
0<6,<n/2
0<6;<2n
0<#,<n
0<b,<n
0<6,<2n
0<6,<n
0<8,<n2
0<#,<2n
0<6,<n/2
0<@,<n
0<6,<2n
0<6,<n/2
0<6,<n/2
0<6,<2n
0<6,<2n/3
0<b,<n
0<é,<2n
0<6,<21/3
0<6,<n/2
0<8,<2n
0<8, <n/3
0<f<n
0<6,<2n
0<6,<n/3
0<6,<n2
0<6,<2n
0<6,<2n
0<6,sn/2
0<6,<2n
0<6,<n/2
0<6,<n
0<6,<2n
0<6,<n
0<6,<n/2
0<8,<2n
0<6 <n/2
0<6,<n/2
0<6,<2n
0<6,<n/2
0<6,<n2
0<6,<2n
0<6,<n/2
0<#,<n
0<6,<n2
0<6, <27/3
0<8,<n/2
0<6,<2n
0<6,<2n/3
0<6,<n
0<6,<n/2
0<6,<n/3
0<6,<n/2
0<6,<2n
0<6,<n/3
0<8,<n
0<6y<n/2
0<6,<2n
0<6,<n
0<b,<n
0<6,<2n
0<6,<n2
0<f<n
0<f,<n
0<f,<n
0<b,<n
0=z6,<n
0<86,<n/2
0<6;<n
0<6,<n/2
0<b,<n
0<b,<n
0<6,<n/2
0<6,<n/2
0<b,<n

No. of
the
rotation
space
group

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

45

46

47

48

49

50

51

52

No. of
equivalent
positions?

12

24

24

48

32

32

64

24

48

48

96

32

32

64

24

48

48

96

32

Table 3 (cont.)

Symbol®

Pbm2

P2,ab

Pbab

P2mb

Pbmb

P2mb

Pbmb

P2,ab

Pbab

P2mb

Pbmb

Pa

Pba2

Pm

Pbm2

Pm

Pbm2

Pa

Pba2

Pm

Pbm2

P2,ab

Pbab

Translation
along the
6, axis®

2n/3

27/3

n/3

n/3

2n

2n

n/2

a/2

2n1/3

2n/3

n/3

n/3

2n

2n

n/2

n/2

2n/3

2n/3

n/3

/3

2n

2n

Translation
along the
8, axis®

n

/2

n/2

/2

n/2

7/2

n/2

n/2

n/2

n/2

/2

n/2

n/2

Range of
the
asymmetric
unit?
0<6,<2n/3
O0<b,<n
0<b,<n
0<6,<2n/3
0<6,<n/2
0<6;<n
0<6,<n/3
0<b,<n
O0<6,<n
0<6,<n/3
0<6,<n/2
0<f,<n
0<6,<2n
0<6,<n/2
0<6,<n
0<6 <n/2
0<b,<n
0<b,<n
0<#,<n
0<6,<n/2
0<6<n
0<6,<n/2
0<6,<n/2
0<8<n
0<6,<n2
0<6,<n/2
0<f<n
0<6,<n/2
0<6,<n/2
0<6,<n/2
0<6, <2n/3
0<8,<n/2
0<6,<n
0<6,<2n/3
0<6,<n/2
0<8,<n/2
0<6,<n/3
0<6,<n/2
0<6,<n
0<6,<n/3
0<6,<n/2
0<6,<n2
0<6,<2n
0<@<n
0<6,<n/2
0<6,<2n
0<6,<n/2
0<#6,<na/2
0<8,<n
0<@,<n
0<6,<n/2
0<6,<n
0<6,sn/2
0<6,<n/2
0<6,<n/2
0<@,<n
0<6,<n/2
0<6,<n/2
0<6,<n/2
0<6,<n/2
0<86,<22/3
0<b,<n
0<8,<n/2
0<6 <2n/3
0<6,<n2
0<6,<n/2
0<6,<n/3
0<@<n
0<6,<n/2
0<6,<n/3
0<6,<n2
0<8,<n2
0<6,<2n
0<8,<n/2
0<6,<n2
0<6,<2n
0<6,<n/2
0<6,<n/4



No. of
the
rotation
space
group

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

No. of
equivalent
positions?

32

64

64

128

48

96

96

192

24

24

48

36

36

72

24

24

48

48

96

36
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Table 3 (cont.)

Symbol®
P2mb

Pbmb

P2mb

Pbmb

P2,ab

Pbab

P2mb

Pbmb

Pn

Pbn2,

Pc

Pbe2,

Pc

Pbc2,

Pn

Pbn2,

Pc

Pbe2,

P2nb

Pbnb

P2cb

Pbcb

P2ch

Pbeb

P2,nb

Translation
along the
8, axis®

n

n/2

/2

2n/3

27/3

n/3

n/3

2n

2n

n/2

n/2

2n/3

2n/3

n/3

n/3

2n

2n

n/2

n/2

27/3

Translation
along the
6, axis®

n/2

n/2

/2

n/2

n/2

n/2

/2

n/2

2n/3

2n/3

2n/3

27/3

2n/3

2n/3

27/3

27/3

27/3

27/3

27/3

27/3

2n/3

27/3

27/3

2n/3

27/3

Range of
the
asymmetric
unit?

6, <n

6, <n/2
10, < n/2
-6, < n/2
6, < n/2
6, < n/2

A CAIAA

[TA

R
A A
g3
NN

A
[
a
~
w

_u
AN
Ry
NN
w

o
A
a

=

EN

IA A A A AN A A A A A A A A A A A A
TRT IR DDT

ABIE ATE A CA A

JA R A3 A

NN NN W N

A
N
B

=n
3 < 27/3
, < 2n
< n/2
s < 27/3

A IA A
s oo

XY
"
B

tIaEd

<0y < 21/3
<, <n

<n/2
3 < 27/3
< n/2
,< 1

) < 21/3
) < /2
, < n/2
< 2n/3
, < 27/3
,<n

< 2n/3
<6, <2n/3
, < n/2
, < 2n/3
, < n/3
R

)< 27/3
< n/3
, < n/2
< 27/3
, < 2n
), < /2
<8< 2n/3
\ < n/2
, <

, < 2n/3

NOAIA A AN
>

AN A A A A A A CGA
DR

TDDI DI

D>

NN A IA

T2

)

AN A A A A A A IA TA A

2D

A A A

Ay
El

, < /2
), < 27/3
6, <n/2
0<6,<n/2
0<6,<2n/3
0<6,<n/2
0<8,<n/2
0<6,<2n/3
0<6,<n/4
0<6,< 12

DD

AIA A

C 000 000000 OO 000000 COO OO OO0 OO0 OO0 OO0 OO0 POCOODO OO OOO

IA

0<#6,<2r/3

Table 3 (cont.)

No. of
the Range of
rotation No. of Translation  Translation the
space  equivalent along the along the asymmetric
group  positions® Symbol® 8, axis® 0, axis® unit?

78 72 Pbnb 27/3 27/3

L
=N

A A NN A

A A
iN
&3

S

79 72 P2ch n/3 27/3

DD DD
I
a
<
~

80 144 Pbcb n/3 2n/3

A A IAA AN A

< ¢, < n/2
y < 21/3
, < 2n

>

81 12 Pa 2n n/3

OO0 OO OO

IAIA A

A

<n
0<6,<n/3
82 24 Pba2 2n n/3 0<8 <2n
0<6,<n/2
0<8,<n/3
83 24 Pm n n/3 06 <n
0<6,<n
0<86,<n/3
84 48 Pbm2 n n/3 0<6,<n
0<8,<n/2
0s6,<n/3
85 48 Pm n/2 /3 0<8,<n/2
0<é,<n
0<6,<n/3
86 96 Pbm?2 n/2 n/3 0<6,<n/2
0<6,<n/2
0<6,<n/3
87 36 Pa 27/3 n/3 0<6,<2n/3
0<6,<n
0<8,<n/3
88 12 Pbal 27/3 n/3 0<86, <2r/3
0<6,<n/2
0<6,<n/3
89 72 Pm n/3 /3 0<6,<n/3

90 144 Pbm2 n/3 n/3 0<6,<n/3

91 24 P2,ab n n/3 0<6,<2n
0<6,<n/2
0<6,<n/3

92 48 Pbab 2n /3 0<6, <n/2
0<6,<n
0<6,<n/3

93 48 P2mb n /3 0<é,<n
0<6,<n/2
0<6,<n/3

94 96 Pbmb n n/3 0<6,<n/2
0<6,<n/2
0<6,<n/2

95 96 P2mb n/2 n/3 0<6,<n/2
0<8,<n/2
0<6,<n/3

96 192 Pbmb n/2 n/3 0<6 <n/4
0<6,<n/2
0<6,<n/3

97 72 P2,ab 27/3 n/3 0<6,<2n/3
0<8,<n/2
0<6,<n/3

98 144 Pbab 2n/3 n/3 0<6,<2n/3
0<6,<n/2
0<6,<n/6

99 144 P2mb n/3 /3 0<6,<n/3
0<6,<n/2
0<8,<n/3

100 288 Pbmb n/3 /3 0<6,<n/6
0<6,<n2
0<6,<n/3

@ This is the number of equivalent positions in the rotation unit cell.

> Each symbol retains the order 8,, 6,, 8;. The monoclinic space groups have the
b-axis unique setting.

< This is a translation symmetry: e.g. for the case of n/2 translation along the 8, axis,
8, 6, 6, goes to 1/2 +6,, 6,, 6, and n +6,, 6,, 6, and 37/2 +6,, 6, 6, All other
equivalent positions in the basic rotation space group are similarly translated.

4 Several consistent sets of ranges exist but the-one with the minimum range of 8, is
listed.
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Table 4. The 16 basic rotation-function space groups

and their equivalent positions

Pa 0., 0,, o, n+6, —0, 6,

Pc 0, 6, 0, 0, —6, n+6,

Pm 0, 0, 6, 6, —b, 6,

Pn 6, 6,, 4, n+6, —0, n+6;

Pbm?2 0, 0y, 6, 6, —06, 6,

—6,, n+6, 6, 6, n—6, 6,

P2mb 0, 0y 0, 0, n+6, —6,

6, —6, 6, 0, n—6, —6,

Pbc2, 0, 0y, A 6, —0, m+6,

—6,, n+6, 0, —6,, n—06, 7m+6,

P2.ab 6, 6,, 6, 6, n+6, —06,

n+6, —6, 6, n+0, n—6, -6,

Pba2 0, 0, 0, n+60, —6, 60,

—6,, 1—6, 4, n—6, n+6, 0,

P2cb 0, 6, A 0, n+6, n—6,

0, 0, m+6, 0, n—0, —6,

Pbn2, 8, 0, 0, 1+6, -0, n+6,

b T—6, m+06, n—6,, m+6,, 6,

P2.nb 6, 0,, 6, 6, m+0, m—0,

n+6, —6, m+6, n+6,, n—6, -6,

Pbab ., 0, 6, 0, n+6, —6,

n+6,, —0, 0, n+6, 1—6, —6,

-6, -6, -6, —6,, n—6,, 6,

-6, 6, —0, n—6,, m+6, 0,

Pbmb 6, 6, 0, 0, n+6, -6,

p —0a 0, 0, -0, -0,

=6, —6, -6, —0,, 10, 6,

-6, 6, —06, —6,, m+6, 0,

Pbcb 0., 0, 0, 0, m+6, n—6,

6, —6, m+6, b m—6, —6,

6, —6, -6, —0,, n—6, 7m+0,

-0,  T—0, —0,, T+, 6,

Pbnb 6, 0,, 6, 6, n+6, n—6,

n+6, —6, n+6, n+60, -0, —b,

6, -6, -0, -0, n—0, n+06,

n—6, 6,, n—0, n—6,, n+6, 6,

positions dictated by the space-group symbol which is
listed. This is due to the translation along the 6, and/or
the 6, axis as indicated. In all instances where the
basic rotation space group is Pa, Pc, Pm or Pn the
asymmetric unit has 8, limits 0 < 6, < #. With a few
exceptions (rotation space groups 12, 16, 18, 20, 32, 72
and 78), the other rotation space groups have 6, limits
0 < 6, < 7/2. In the seven exceptions listed, an upper
limit of 7 for &, was required in order for a continuous
asymmetric unit to be chosen. If the basic rotation-
function space group is not Pbmb, Pbab, Pbch or Pbnb
then the 8, and &; limits on the asymmetric unit are
equal to the allowed translations in 6, and 6,. For these
four basic rotation-function space groups of highest
symmetry 6, or 6, limits less than the 6, and 6, trans-
lations are possible.

Crowther (1972) has used a definition of the rotation
angles (a, § and ) in his fast rotation function program
which is different from that adopted by Rossmann &
Blow (1962). However, a simple relationship exists
between the two systems, viz: §, =a + 7/2, #, = f and
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6, = y — n/2. Moreover, Crowther’s program always
computes ranges of a and y from O to 27/p, where p is
the rotational symmetry along the axis about which the
a rotation takes place. The symmetry of the Patterson
map which is rotated affects the range of a, and the
symmetry of the stationary Patterson map affects the
range of y. This treatment is equivalent to acknow-
ledging the translational symmetry which we observed
in the equivalent positions of the rotation-function
space groups. Therefore, the asymmetric units
tabulated in Table 3 are appropriate for determining the
range of S required to cover the unique portion of
rotation space. Crowther’s program reindexes mono-
clinic data to the c-axis unique setting so those rotation
space groups involving the b-axis unique setting will not
occur. When the rotation space-group symmetry is
Pbab, Pbmb, Pbcb or Pbnb the asymmetric unit listed in
Table 3 is smaller in 6, or f, than is deduced from
consideration of the translational symmetry only.

e+
A

®)

Fig. 1. Derivation of asymmetric unit in ,, §_ space for rotation
space group 19. 6, translation is #/3, 6, translation is 2%, and
6, translation is 4. Each segment of the asymmetric unit in (@) is
moved by allowed translations parallel to 8, or 6; to the similarly
marked segment in (b). This transfer does not involve 6,.
Consequently, the Eulerian space asymmetric unit of 0 < 6, <
7/3,0 < 6, <n/2,0 <6, <2nbecomes 0 < 8, <41,0<6, <
/2,0 <60_<n/3inb,, 6_space.
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However, in all instances but one, the 6,(f) range
required will be that which is tabulated. The one
exception is space group 78 where we chose a
contiguous asymmetric unit 0 <8, <n/6,0< 6, <=0
< 6, < 2n/3. A B range from 0 to /2 will suffice for
Crowther’s treatment since the a and y will both range
from 0 to 27/3. In the rotation space groups of
symmetry Pbab, Pbmb, Pbchb and Pbnb there will be
more than one copy of the asymmetric unit in the
output.

Derivation of asymmetric units in 8, , 6_ space

Lattman (1972) showed that if the coordinates of the
rotation function are 8,, 6, and §_ where 8, = 6, + 6,
and 8_ = 6, — 6,, then the coordinates are locally
orthogonal and the sample points are associated with
equal volumes so that more symmetrical peaks occur.
He also presented a graphical means for determining
the asymmetric unit in 8,, 6_ space. Fig. 1 demon-
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strates the application of this method to rotation space
group 19, which served as an example above. In this
method, translations of portions of the asymmetric unit
are allowed along the 6, and 6, axes as dictated by the
rotation space group and listed in Table 3. Trans-
lations in the @, direction sometimes are required. The
translational equivalent in 6, is twice the translation
which is a multiple of both the 6, and the &,
translations. For example, if the 6, translation is 7/3
and the 6, translation is 7/2, 7 is a multiple of both of
these so that a 27 translation in 8, is allowed.

In order to derive the asymmetric units of all of the
rotation space groups in 6,, 6_ space, the rotation-
function space groups are best arranged according to
translational symmetry in 6, and . Our results for the
100 rotation-function space groups are given in Table
5. In all instances but two (rotation space groups 58
and 76), the minimum asymmetric unit in ., 6_ space
may run in #_ from O to an upper limit which is equal to
the translational symmetry in 6, or 6,, whichever is
smaller. In a majority of cases, a rectangular,

Table 5. Asymmetric units in 8., 6_ space

The rotation space groups are divided according to translational symmetry in 6, (horizontal) and 8, (vertical). Within each square, the first
line lists the numbers of the four rotation space groups which have the indicated translational symmetry. If the list is followed by t the true
asymmetric unit for all four space groups is smaller than the rectangular unit listed, while if the list is followed by * such is the case only
for the last rotation space group listed. If only one set of §,, #_ limits is listed it applies to all four space groups; when a second set of limits
is listed it applies only to the fourth space group listed. The 8, limits are the same as shown in Table 3 with two exceptions. Rotation space
groups 12 and 78, marked with §, have limits 0 < 8, < /2 in 6., §_ space.

/3 %/2 2v/3 L4 2% 0,
89,90,99,100% 85,86,95,961 87,88,97,98* 83,84,93,94* 81,82,91,92*
0 <64 < 2n/3 ~%/3 <64 8w 0 < 084 < 4n/3 0 <64 <2n 0 < 84 < 4x
w/3 0<6-<w/3 0<6-<1x/3 0 <6.<w/3 0 <08.<n/3 0 < 6. <n/3
-%/3 < 8, S n/2 -%/3 <04 < ¥ -n/3 < 6, £ 3¢
0<6-2<%/3 0<6-<n/3 0c6.2w/3
+
49,50,59,60 45,46 ,55,56* 47,48,57,58% 43,44,53,54* 41,42,51,52*
0 < 6+ < 4n/3 0 <6 < -%/2 & 84 < 41/3 06, <2x 0 < 6+ < 4x
/2 0 <68-<w/3 0< 6. <w/2 0<6-<mw/2 0<6.<w/2 0 <6-<w/2
0 < 6+ < 5%/6 0 <0+ <5 /6 /2 < 8+ S W
0<6-2<n/3 0 6. < 2n/3 0 < 8- < /2
€9,70,79,80* 65,66,75,76 1 67,68,77,78% 63,64,73,74% 61,62,71,72*
0204 <4n/3 0 < 6+ < 11n/6 0 <84 <4n/3 -2n/3 < 8+ < 27 0 < 64 < 4x
2%/3 0<6.5mn/3 0 <8¢ /2 0<6-<2n/3 0<6-<2n/3 0 g 6-g27/3
0 <04 < Tn/6 /3 <0+ X -2n/3 < B4 S W
-n/6 < 8- < /2 0 <6~ < 2n/3 0 g 6-<2n/3
29,30, 39, 40* 25,26,135,36* 27,28,37,38% 23,24,33,34" 21,22,31,32*
0 <84 < 2n 0 < 04 <27 0 <64 <81/3 0 <84 <2n 0 < 64 < 4x
L 0<6-.<n/3 0<6- 25 %/2 0 < 8. < 2n/3 0<b-< 0 <8< w
0 <64 < 4n/3 0 < 64 < 3n/2 0 < 04 < 51/3 - o:e,:n
0<6-2<m/3 0<6_<n/2 06-<2n/3 -n<B.<w
9,10,19,20* 5,6,15,16* 7,8,17,18* 3,4,13,14* 1,2,11,12%8
0 < 6+ < 4n 0 < 6+ < 4m 0 <6, < 4nm 0 < 84 < 4rn 0 < 84 < 4nm
2 0 < 6. <mn/3 0 < 6-g /2 0 < 8- < 2n/3 0 <6< 0 < 6- <27
0504 an/3 08+ g an/2 0 <6+ 55/3 -
0 <6-< /3 0<6-<m/2 0<0-g2n/3

83
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continuous asymmetric unit can be deduced in 6,, §_
space. For these cases the limits in §, are from O to
twice the translational symmetry in 6, or ¢,, whichever
is larger. In the other instances where the asymmetric
unit is not rectangular or not continuous, the asym-
metric unit listed in Table 5 will contain some
redundancy. A space-group-specific rotation-function
computer program which only calculates the unique
portions of the asymmetric units listed in Table 5 is
certainly feasible.

Discussion

The rotation function is now being applied widely to
elucidate macromolecular structures. Rotation func-
tions are calculated either in terms of Eulerian angles
6,, 0,, 0, as described by Rossmann & Blow (1962) or
in the quasi-orthogonal angles 4,, 8, and 4_. Some-
times, if an internal symmetry axis can be anticipated,
the spherical polar angles ¢ and w and the azimuthal
angle y are used. However, the symmetry of the
rotation function is more difficult to define in this
system.

In several instances rotation-function space groups
have been explicitly stated in the literature. These
studies provide confirmation of our assignment of
rotation-function space groups for space groups 12
(Rossmann & Blow, 1962), 22 (Wishner, Ward,
Lattman & Love, 1975), 24 (Tollin, Main &
Rossmann, 1966), 31 (Lattman & Love, 1970; Ward,
Wishner, Lattman & Love, 1975), 32 (Burnett &
Rossmann, 1971) and 34 (Rossmann, Ford, Watson &
Banaszak, 1972). Although many of these workers did

Acta Cryst. (1980). A36, 884888
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not choose asymmetric-unit limits the same as those
listed in Tables 4 and 5, their choices are equivalent to
ours. In a study which uses rotation space group 61,
the space-group name is not given but the limits on 4,
6, and 6_ which were used are consistent with our
asymmetric unit (Schmidt, Herriott & Lattman, 1974).

We wish to thank Dr Dick van der Helm for careful
scrutiny of Jyh-Hwang Jih’s PhD dissertation. Finan-
cial support was provided by grant no. PCM77-27337
from the National Science Foundation.
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Abstract

The 46 black and white plane groups are well known.
The corresponding colour groups with more than two
colours are extremely numerous. We give a listing of
the 935 groups with N colours for N lying between 2
and 15 inclusive.

0567-7394/80/060884-05$01.00

1. Introduction

Consider an n-dimensional space group G whose
elements permute N colours transitively and let G, be
the subgroup keeping the first colour fixed. Then the
index of G, in G is N and the colours correspond
naturally to the cosets. The effect of any member of G
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